INTRODUCTION

The Hinsdale School District PreK-12 science curriculum is a coordinated program built around science education and the expectations of the New Hampshire Curriculum Frameworks. It proceeds sequentially; introducing, expanding, and further exploring content at appropriate grade levels with increasing degrees of depth and complexity. The Common Core State Standards for English Language Arts include standards pertaining to all content areas. **Teachers are responsible for incorporating the Common Core State Standards into their science instruction.**

IMPORTANT NOTE TO ALL TEACHERS

It is important for teachers to follow the curriculum for each grade level or class as described in this guide; the integrity of the PreK-12 sequence has been carefully considered in its creation. Grade levels and individual classes have some degree of flexibility in designing the sequence of topics through the year, but *addressing the provided scope is required*. At the elementary level, the topics for each grade level have been carefully planned so as to address necessary content without redundancy or omission to meet the expectations of the NH frameworks and high stakes testing. At the middle school and high school levels the curricula are also constructed to fully meet the expectations of the NH frameworks and high stakes testing. The guiding questions in each section make clear the topics of inquiry (scope) for each grade. These topics change and build on each other through the grades (sequence), making it imperative that each teacher use the guiding questions to plan instruction.

SCIENCE INQUIRY Science Inquiry Actu

Capture student interest and motivate continued learning!

Inquiry involves QUESTIONING. Inquiry requires being able to identify assumptions, to use critical and logical thinking, and the ability to consider alternative explanations. Inquiry might be highly structured where known outcomes are clear, or students may be free to explore with unanticipated results!

Students engaged in Inquiry:

- make observations
- pose questions
- propose answers
- examine what they may already know
- review already researched information
- explain / communicate results
- use tools to
 - o gather
 - o analyze
 - o interpret data

Students use journals to record observations, thoughts, ideas, and models, create diagrams, and represent data and observations with plots and tables. Students present their work to others with models, graphs, reports, posters, etc.

Asking students questions to guide continued exploration provides opportunities for discussion, further reflection, and student decision-making.

Appropriate activities are safe, developmentally appropriate, and directly related to the curriculum. Sufficient tools and materials must be available and science inquiry vocabulary (provided in guide) used.

Essential Understandings

The Science Curriculum for Hinsdale Elementary, Middle and High School is built around the standards listed in the New Hampshire Curriculum Framework. Science is divided into three content domains (Earth Space Science, Life Science, and Physical Science) and one Science Process Skills domain. The three content domains should encompass the Scientific Process Skills of Inquiry and Critical Thinking Skills. The following list of Essential Understandings or Enduring Knowledge Statements are used across all grade levels.

Essential Understandings Earth Space Science

Strand	rand Stom (rows) in GSEs	
(Enduring Knowledge Statements)	Stelli (IOWS) III USES	
	1. Atmosphere, Climate, and	
	Weather	
	2. Composition and Features	
ESS1– The Earth and Earth materials,	3. Fossils	
as we know them today, have	4. Observation Of The Earth	
developed over long periods of time,	From Space	
through constant change processes.	5. Processes and Rates Of	
	Change	
	6. Rock Cycle	
	7. Water	
ESS2– The Earth is part of a solar	1. Earth, Sun And Moon	
system, made up of distinct parts,	2. Energy	
hich have temporal and spatial 3. Solar System		
interrelationships.	4. View From Earth	
ESS3– The origin and evolution of	1. Size And Scale	
galaxies and the universe	2. Stars And Galaxies	
demonstrate fundamental principles	3. Universe	
of physical science across vast		
distances and time.		
ESS4– The growth of scientific	growth of scientific 1. Design Technology	
knowledge in Earth Space Science	2. Tools	
has been advanced through the	3. Local And Global	
development of technology and is	Environmental Issues	
used (alone or in combination with		
other sciences) to identify,	4. Career and Technical	
understand and solve local and	Education	
global issues.		

Essential Understandings Life Science

Strand	trand vledge Statements) Stem (rows) in GSEs	
(Enduring Knowledge Statements)		
LS1– All living organisms have	1. Classification	
identifiable structures and	2. Living Things And Organization	
characteristics that allow for	3. Reproduction	
survival (organisms, populations,		
and species).		
IS2-Energy flows and matter	1. Environment	
recycles through an ecosystem.	2. Flow Of Energy	
	3. Recycling Of Materials	
LS3– Groups of organisms show	1. Change	
evidence of change over time (e.g.	2. Evolution	
evolution, natural selection,	3. Natural Selection	
structures, behaviors, and		
biochemistry).		
LS4– Humans are similar to other	1. Behavior	
species in many ways, and yet are	2. Disease	
unique among Earth's life forms.	3. Human Identity	
ISE The growth of scientific	1. Design Technology	
LSS- The growth of science has been	2. Tools	
advanced through the development	3. Social Issues (Local And	
of technology and is used (alone or	Global)	
in combination with other sciences)	Medical Technology and	
to identify understand and solve	Biotechnology	
local and global issues.	4. Career Technical Education	
	Connections	

Essential Understandings Physical Science

Strand	Stem (rows) in GSEs	
(Enduring Knowledge Statements)		
PS1– All living and nonliving things	1. Composition	
are composed of matter having	· · ·	
characteristic properties that		
distinguish one substance from	2. Properties	
another (independent of		
size/amount of substance).		
PS2– Energy is necessary for change	1. Change	
to occur in matter. Energy can be	2. Conservation	
tored, transferred and 3. Energy		
transformed, but cannot be		
destroyed.		
PS3– The motion of an object is	1. Forces	
affected by force.	2. Motion	
PS4– The growth of scientific	1. Design Technology	
knowledge in Physical Science has	2. Tools	
been advanced through the	3. Social Issues (Local and Global)	
development of technology and is	Energy, Power, and	
used (alone or in combination with	Transportation	
other sciences) to identify,	Manufacturing	
understand and solve local and	4. Career Technical Education	
global issues.	Connections	

Essential Understandings Science Process Skills

Strand		
(Enduring Knowledge	Stem (rows) in GSEs	
Statements)		
	1. Making observations and asking questions	
	2. Designing scientific investigations	
	3. Conducting scientific investigations	
SPS1_Scientific Inquiry and	4. Representing and Understanding results of	
Critical Thinking Skills	Investigations	
	5. Evaluating Scientific Investigations	
	NECAP Science Assessment Targets for	
	Inquiry (INQ)	
	May subject of performance component	
SPS2—Unifying Concents of	1.Nature of Science (NOS)	
Science (including NECAP	2.Systems and Energy (SAE)	
Science Assessment Targets	3.Models and Scale (MAS)	
by Big Idea)	4. Patterns of Change (POC)	
by big idea)	5.Form and Function (FAF)	
	1. Collaboration in Scientific Endeavors	
SPS3– Personal, Social, and	2. Environment, Natural Resources, and	
Technological Perspectives	Conservation	
	3. Science, Technology, and Design	
	1. Information and Media Literacy	
	2. Communication Skills	
	3. Critical Thinking and Systems Thinking	
SPS4– Science Skills for	4. Problem Identification, Formulation, and	
Information,	Solution	
Communication and Media	5. Creativity and Intellectual Curiosity	
Literacy	acy 6. Interpersonal and Collaborative Skills	
	7. Self Direction	
	8. Accountability and Adaptability	
	9. Social Responsibility	

GRADE:11- Chemistry

Physical Science

	Standards	Guiding Questions
PS1	S:PS1:11:1.1 Recognize and describe the structure of an atom and explain how the	What is matter?
	quarks and leptons)	discovered?
	S:PS1:11:1.2 The periodic table. Relationship between atomic number and atomic mass. (2.7: Explain how the properties of elements and their location in the periodic table are related)	What determines the position of an element within the periodic table?
	S:PS1:11:1.4 Isotopes. Explain how neutrons affect the mass and stability of the nucleus. (Radioactivity)	How are the electrons distributed within the electron cloud?
	S:PS1:11:1.5 Development of the Atomic Theory.	How do atoms make molecules?
	S:PS1:11:1.6 Electron configuration and chemical reactivity.	How do the properties of an element change when it combines to form a compound?
	S:PS1:11:2.1 Explain that the physical properties of a compound are determined by their molecular structure and the interactions among	How do ions form?
	the molecules.	How do molecules interact with one
	ions.	another? What are the molecular
	S:PS1:11:2.3 Describe how atoms interact with one another by transferring or sharing their outermost electrons. (Covalent and Ionic bonding)	differences between a solid a liquid and a gas? How can an unknown
	S:PS1:11:2.5 Arrangement of matter in solids, liquids and gasses. Water and hydrogen bonds.	substance be identified experimentally?

PS1	S:PS1:11:2.6 Use physical and chemical	
	properties to identify a substance	
PS2	S:PS2:11:1.1 Crystalline solids. Recognize and	
	explain that atoms bond together to form	What are the properties
	molecules or formula units. Explain the Mole	of a crystalline solid?
	concept.	
		What affects the rates of
	S:PS2:11:1.4 Recognize that the rate of chemical	chemical reactions?
	reactions can vary greatly.	
		What is a chemical
	S:PS2:11:1.5 Explain relationships between and	reaction?
	among electric charges, magnetic fields,	
	electromagnetic forces, and atomic particles.	How is energy related to
		chemical reactions?
	S:PS2:11:2.1 Explain that chemical reactions	
	either release or consume energy.	
	S:PS2:11:2.2 Explain that chemical reactions can	
	be accelerated by catalysts such as enzymes.	
	S-DS2-11-2 2 Recognize that a large number of	
	important reactions involve the transfer of	
	either electrons, or hydrogen ions between	Why is life on this planet
	reacting ions molecules or atoms	Carbon based?
	reacting ions, morecules, or atoms.	curbon buscu:
	S:PS2:11:2.4 Identify the variety of structures	Why can Carbon form so
	that may be formed from the bonding of Carbon	many different
	atoms.	molecules?
	S:PS2:11:2.5 Demonstrate how transformations	
	of energy produce some energy in the form of	
	heat and therefore the efficiency of the system	
	is reduced (laws of Thermodynamics)	
		How does energy change
	S:PS2:11:3.1 and 3.2 Different types of energy	form?
	and energy conversions.	

Physical Science

	 S:PS2:11:3.3 Describe how the energy associated with individual atoms and molecules can be used to identify the substances they comprise; and explain that each kind of atom or molecule can gain or lose energy in particular discrete amounts, absorbing and emitting light only at wavelengths corresponding to these amounts. S:PS2:11:3.4 The Electromagnetic Spectrum S:PS2:11:3.5 Heat, temperature and molecular motion. 	Why do we see colors? What is heat and how does it get transferred?	
PS3	Covered in Physics		
PS4	Covered in Physics		

GRADE:11- Chemistry

Physical Science Essential Vocabulary

CONTENT

Atoms Matter Elements Compounds Periodic table Atomic number Atomic mass Protons, neutrons, electrons Molecule lon Isotope Quarks Leptons String Theory Orbital and suborbital **Electron configuration** Physical and chemical properties Reactants Products Covalent bond Ionic bond Energy Exothermic Endothermic Entropy

INQUIRY

Scientific Method **Hypothesis** Variable Independent and dependent variables Data Statistical analysis Model Inference Evidence Understanding Recognizing Identifying Explain Differentiate Predict Demonstrate Compare

Physical Science

Suggested Resources/ Activities Training on safety features and hazards in the lab, use of equipment, MSDS, Safety Color Code, 10 steps in using Bunsen burner, and handling/disposal of chemicals. Laboratory activities: "Accuracy and Precision in Measurement" "Relative Solubility of Alkaline Earth Metals". "Halides and Their Identification" Molecular Geometry using molecular model kits. Classifying Bonds in Compounds based on properties. " Percent Oxygen in Potassium Chlorate" "Solubility Rules" for solutions, including roles of heat of solution, similarity in bonding, surface area of solute, and agitation on the rate of solution. "Catalysis and Rate of Hydrogen Peroxide Decomposition" "Types of Chemical Reactions" Lab investigations from Holt Modern Chemistry: Conservation of Mass, Boyle's Law, Stoichiometry and Gravimetric Analysis, Molar Volume of Hydrogen Labs: Preparation and Properties of Hydrogen, Chemical properties of water, Crysallization Labs using spectroscopy (Beer's Law), freezing point determination, and acid-base properties. Lab on pH, and on acid-base titration Atomic Model Kits, Lab on Carbon and its properties, Lab on Casein Glue. http://www.education.nh.gov/instruction/curriculum/science/index.htm (Science Curriculum Website)

GRADE:11- Chemistry

Physical Science