INTRODUCTION

The Hinsdale School District PreK-12 science curriculum is a coordinated program built around science education and the expectations of the New Hampshire Curriculum Frameworks. It proceeds sequentially; introducing, expanding, and further exploring content at appropriate grade levels with increasing degrees of depth and complexity. The Common Core State Standards for English Language Arts include standards pertaining to all content areas. **Teachers are responsible for incorporating the Common Core State Standards into their science instruction.**

IMPORTANT NOTE TO ALL TEACHERS

It is important for teachers to follow the curriculum for each grade level or class as described in this guide; the integrity of the PreK-12 sequence has been carefully considered in its creation. Grade levels and individual classes have some degree of flexibility in designing the sequence of topics through the year, but *addressing the provided scope is required*. At the elementary level, the topics for each grade level have been carefully planned so as to address necessary content without redundancy or omission to meet the expectations of the NH frameworks and high stakes testing. At the middle school and high school levels the curricula are also constructed to fully meet the expectations of the NH frameworks and high stakes testing. The guiding questions in each section make clear the topics of inquiry (scope) for each grade. These topics change and build on each other through the grades (sequence), making it imperative that each teacher use the guiding questions to plan instruction.

SCIENCE INQUIRY Science Inquiry Actu

Capture student interest and motivate continued learning!

Inquiry involves QUESTIONING. Inquiry requires being able to identify assumptions, to use critical and logical thinking, and the ability to consider alternative explanations. Inquiry might be highly structured where known outcomes are clear, or students may be free to explore with unanticipated results!

Students engaged in Inquiry:

- make observations
- pose questions
- propose answers
- examine what they may already know
- review already researched information
- explain / communicate results
- use tools to
 - o gather
 - o analyze
 - o interpret data

Students use journals to record observations, thoughts, ideas, and models, create diagrams, and represent data and observations with plots and tables. Students present their work to others with models, graphs, reports, posters, etc.

Asking students questions to guide continued exploration provides opportunities for discussion, further reflection, and student decision-making.

Appropriate activities are safe, developmentally appropriate, and directly related to the curriculum. Sufficient tools and materials must be available and science inquiry vocabulary (provided in guide) used.

Essential Understandings

The Science Curriculum for Hinsdale Elementary, Middle and High School is built around the standards listed in the New Hampshire Curriculum Framework. Science is divided into three content domains (Earth Space Science, Life Science, and Physical Science) and one Science Process Skills domain. The three content domains should encompass the Scientific Process Skills of Inquiry and Critical Thinking Skills. The following list of Essential Understandings or Enduring Knowledge Statements are used across all grade levels.

Essential Understandings Earth Space Science

Strand	Stem (rows) in GSEs	
(Enduring Knowledge Statements)		
	1. Atmosphere, Climate, and	
	Weather	
	2. Composition and Features	
ESS1– The Earth and Earth materials,	3. Fossils	
as we know them today, have	4. Observation Of The Earth	
developed over long periods of time,	From Space	
through constant change processes.	5. Processes and Rates Of	
	Change	
	6. Rock Cycle	
	7. Water	
ESS2– The Earth is part of a solar	1. Earth, Sun And Moon	
system, made up of distinct parts,	2. Energy	
which have temporal and spatial	3. Solar System	
interrelationships.	4. View From Earth	
ESS3– The origin and evolution of	1. Size And Scale	
galaxies and the universe	2. Stars And Galaxies	
demonstrate fundamental principles	3. Universe	
of physical science across vast		
distances and time.		
ESS4– The growth of scientific	1. Design Technology	
knowledge in Earth Space Science	2. Tools	
has been advanced through the	3. Local And Global	
development of technology and is	Environmental Issues	
used (alone or in combination with		
other sciences) to identify,	4. Career and Technical	
understand and solve local and	Education	
global issues.		

Essential Understandings Life Science

Strand (Enduring Knowledge Statements)	Stem (rows) in GSEs
LS1– All living organisms have	1. Classification
identifiable structures and	2. Living Things And Organization
characteristics that allow for	3. Reproduction
survival (organisms, populations, and species).	
IS2_ Energy flows and matter	1. Environment
LS2– Energy flows and matter recycles through an ecosystem.	2. Flow Of Energy
	3. Recycling Of Materials
LS3– Groups of organisms show	1. Change
evidence of change over time (e.g.	2. Evolution
evolution, natural selection,	3. Natural Selection
structures, behaviors, and	
biochemistry).	
LS4– Humans are similar to other	1. Behavior
species in many ways, and yet are	2. Disease
unique among Earth's life forms.	3. Human Identity
ISE The growth of scientific	1. Design Technology
LS5– The growth of scientific	2. Tools
knowledge in Life Science has been advanced through the development	3. Social Issues (Local And
of technology and is used (alone or	Global)
in combination with other sciences)	Medical Technology and
to identify, understand and solve local and global issues.	Biotechnology
	4. Career Technical Education
	Connections

Essential Understandings Physical Science

Strand (Enduring Knowledge Statements)	Stem (rows) in GSEs	
PS1– All living and nonliving things	1. Composition	
are composed of matter having		
characteristic properties that		
distinguish one substance from	2. Properties	
another (independent of		
size/amount of substance).		
PS2– Energy is necessary for change	1. Change	
to occur in matter. Energy can be	2. Conservation	
stored, transferred and	3. Energy	
transformed, but cannot be		
destroyed.		
PS3– The motion of an object is	1. Forces	
affected by force.	2. Motion	
PS4– The growth of scientific	1. Design Technology	
knowledge in Physical Science has	2. Tools	
been advanced through the	3. Social Issues (Local and Global)	
development of technology and is	Energy, Power, and	
used (alone or in combination with	Transportation	
other sciences) to identify,	Manufacturing	
understand and solve local and	4. Career Technical Education	
global issues.	Connections	

Essential Understandings Science Process Skills

Strand (Enduring Knowledge Statements)	Stem (rows) in GSEs	
	1. Making observations and asking questions	
	2. Designing scientific investigations	
	3. Conducting scientific investigations	
SPS1– Scientific Inquiry and	4. Representing and Understanding results of Investigations	
Critical Thinking Skills	5. Evaluating Scientific Investigations	
	NECAP Science Assessment Targets for	
	Inquiry (INQ)	
	May subject of performance component	
	1.Nature of Science (NOS)	
SPS2– Unifying Concepts of	2.Systems and Energy (SAE)	
Science (including NECAP Science Assessment Targets	3. Models and Scale (MAS)	
by Big Idea)	4. Patterns of Change (POC)	
by big idea)	5.Form and Function (FAF)	
	1. Collaboration in Scientific Endeavors	
SPS3– Personal, Social, and	2. Environment, Natural Resources, and	
Technological Perspectives	Conservation	
	3. Science, Technology, and Design	
	1. Information and Media Literacy	
	2. Communication Skills	
	3. Critical Thinking and Systems Thinking	
SPS4– Science Skills for	4. Problem Identification, Formulation, and	
Information,	Solution	
Communication and Media	5. Creativity and Intellectual Curiosity	
Literacy	6. Interpersonal and Collaborative Skills	
	7. Self Direction	
	8. Accountability and Adaptability	
	9. Social Responsibility	

Environmental Science

	Standards	Guiding
		Questions
LS1	NA covered in Biology	
LS2	 S:LS2:11:1.1 and 1.3 Carrying Capacity of the environment. S:LS2:11:1.2 Interrelationships and interdependencies among organisms. Ecosystems stability and fluctuations. 	How is the amount of life an environment can sustain restricted by the availability of matter and energy?
	 S:LS2:11:1.4 Analyze and describe how environmental disturbances, such as climate changes, natural events, human activity and the introduction of invasive species, can affect the flow of energy or matter in an ecosystem. S:LS2:11:1.5 Using data from a specific ecosystem, explain relationships or make predictions about how environmental disturbance (human impact or natural events) affects the flow of energy or cycling of matter in an ecosystem. S:LS2:11:2.1 Trophic levels. Energy flow in an ecosystem 	What are the factors that affect the stability of an ecosystem? What happens when a part of the ecosystem is disrupted? What are the factors that affect the carrying capacity of the environment? How do Human activities affect the environment? How do matter and energy get recycled in
	 S:LS2:11:3.1 Explain that as matter and energy flow through different levels of organization in living systems and between living systems and the environment, elements, such as carbon and nitrogen, are recombined in different ways. S:LS2:11:3.2 Biogeochemical cycles of different elements (Carbon, Nitrogen, etc.) 	nature?

Environmental Science

		· · · · · · · · · · · · · · · · · · ·
LS3	S:LS3:11:1.1 Identify ways humans can impact and alter the stability of ecosystems,	What happens when habitats are destructed?
	such as habitat destruction, pollution, and	
	consumption of resources; and describe the	Can environmental
	potentially irreversible effects these changes can cause.	degradation be reversed?
		How did NH forests look
	S:LS3:11:1.2 Identify ways of detecting, and limiting or reversing environmental damage.	like 100 years ago?
		What are the government
	S:LS3:11:1.3 Analyze the aspects of	(federal and state)
	environmental protection, habitat management, species conservation and	agencies that are in charge of environmental
	environmental agencies and regulations; and	issues?
	evaluate and justify the need for public policy	
	in guiding the use and management of the	
	environment	
LS4	S:LS4:11:2.6 Use evidence to make and support	How is our health
	conclusions about the ways that humans or	affected by
	other organisms are affected by environmental factors (pollution, environmental toxicity, etc.)	environmental factors?
		How does pollution affect
LS5	S:LS5:11:3.1 Describe ways technology can	our well being? How can technology help
L33	support and improve our understanding of	us solve environmental
	environmental issues.	issues?

Environmental Science

Essential Vocabulary	
CONTENT	INQUIRY
Environment	Describe
Population	Identify
Community	Differentiate
Ecosystem	Recognize
Biosphere	Explain
Biome	Justify
Carrying Capacity	Compare/contrast
Pollution	Evidence
Ecology	Interrelations
Environmental Science	Interdependence
Trophic levels, chains and webs	Inquiry
Energy flow	Scientific method
Biogeochemical cycles	Observation
Environmental Policy	Hypothesis
Impact	Prediction
Alteration	Variable
Conservation	Experiment
	Data
	Measurement
	Analyze
	Infer
	Conclude
	Graph

Grade: <u>11</u>

Environmental Science

Suggested Resources/ Activities

EPA http://www.epa.gov/enviroed/

Fish and wildlife service: <u>http://www.wildlife.state.nh.us/Kids/kids.htm</u>

http://apps.exploratorium.edu/10cool/index.php?category=6&cmd=browse

http://www.education.nh.gov/instruction/curriculum/science/index.htm (Science Curriculum Website)

http://www.education.nh.gov/instruction/assessment/necap/released/index.htm (Science NECAP- Released items)