### INTRODUCTION

The Hinsdale School District PreK-12 science curriculum is a coordinated program built around science education and the expectations of the New Hampshire Curriculum Frameworks. It proceeds sequentially; introducing, expanding, and further exploring content at appropriate grade levels with increasing degrees of depth and complexity. The Common Core State Standards for English Language Arts include standards pertaining to all content areas. **Teachers are responsible for incorporating the Common Core State Standards into their science instruction.** 

### **IMPORTANT NOTE TO ALL TEACHERS**

It is important for teachers to follow the curriculum for each grade level or class as described in this guide; the integrity of the PreK-12 sequence has been carefully considered in its creation. Grade levels and individual classes have some degree of flexibility in designing the sequence of topics through the year, but *addressing the provided scope is required*. At the elementary level, the topics for each grade level have been carefully planned so as to address necessary content without redundancy or omission to meet the expectations of the NH frameworks and high stakes testing. At the middle school and high school levels the curricula are also constructed to fully meet the expectations of the NH frameworks and high stakes testing. The guiding questions in each section make clear the topics of inquiry (scope) for each grade. These topics change and build on each other through the grades (sequence), making it imperative that each teacher use the guiding questions to plan instruction.

# SCIENCE INQUIRY Science Inquiry Actu



# Capture student interest and motivate continued learning!

Inquiry involves QUESTIONING. Inquiry requires being able to identify assumptions, to use critical and logical thinking, and the ability to consider alternative explanations. Inquiry might be highly structured where known outcomes are clear, or students may be free to explore with unanticipated results!

Students engaged in Inquiry:

- make observations
- pose questions
- propose answers
- examine what they may already know
- review already researched information
- explain / communicate results
- use tools to
  - o gather
  - o analyze
  - o interpret data

Students use journals to record observations, thoughts, ideas, and models, create diagrams, and represent data and observations with plots and tables. Students present their work to others with models, graphs, reports, posters, etc.

Asking students questions to guide continued exploration provides opportunities for discussion, further reflection, and student decision-making.

Appropriate activities are safe, developmentally appropriate, and directly related to the curriculum. Sufficient tools and materials must be available and science inquiry vocabulary (provided in guide) used.

### **Essential Understandings**

The Science Curriculum for Hinsdale Elementary, Middle and High School is built around the standards listed in the New Hampshire Curriculum Framework. Science is divided into three content domains (Earth Space Science, Life Science, and Physical Science) and one Science Process Skills domain. The three content domains should encompass the Scientific Process Skills of Inquiry and Critical Thinking Skills. The following list of Essential Understandings or Enduring Knowledge Statements are used across all grade levels.

### Essential Understandings Earth Space Science

| Strand                               | Stem (rows) in GSEs         |  |
|--------------------------------------|-----------------------------|--|
| (Enduring Knowledge Statements)      | Stelli (lows) ill ddes      |  |
|                                      | 1. Atmosphere, Climate, and |  |
|                                      | Weather                     |  |
|                                      | 2. Composition and Features |  |
| ESS1– The Earth and Earth materials, | 3. Fossils                  |  |
| as we know them today, have          | 4. Observation Of The Earth |  |
| developed over long periods of time, | From Space                  |  |
| through constant change processes.   | 5. Processes and Rates Of   |  |
|                                      | Change                      |  |
|                                      | 6. Rock Cycle               |  |
|                                      | 7. Water                    |  |
| ESS2– The Earth is part of a solar   | 1. Earth, Sun And Moon      |  |
| system, made up of distinct parts,   | 2. Energy                   |  |
| which have temporal and spatial      | 3. Solar System             |  |
| interrelationships.                  | 4. View From Earth          |  |
| ESS3– The origin and evolution of    | 1. Size And Scale           |  |
| galaxies and the universe            | 2. Stars And Galaxies       |  |
| demonstrate fundamental principles   | 3. Universe                 |  |
| of physical science across vast      |                             |  |
| distances and time.                  |                             |  |
| ESS4– The growth of scientific       | 1. Design Technology        |  |
| knowledge in Earth Space Science     | 2. Tools                    |  |
| has been advanced through the        | 3. Local And Global         |  |
| development of technology and is     | Environmental Issues        |  |
| used (alone or in combination with   |                             |  |
| other sciences) to identify,         | 4. Career and Technical     |  |
| understand and solve local and       | Education                   |  |
| global issues.                       |                             |  |

### Essential Understandings Life Science

| Strand                                                                                               | Stom (rows) in CSEs               |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| (Enduring Knowledge Statements)                                                                      | Stem (rows) in GSES               |  |
| LS1– All living organisms have                                                                       | 1. Classification                 |  |
| identifiable structures and                                                                          | 2. Living Things And Organization |  |
| characteristics that allow for                                                                       | 3. Reproduction                   |  |
| survival (organisms, populations,                                                                    |                                   |  |
| and species).                                                                                        |                                   |  |
| IS2-Energy flows and matter                                                                          | 1. Environment                    |  |
| recycles through an ecosystem.                                                                       | 2. Flow Of Energy                 |  |
|                                                                                                      | 3. Recycling Of Materials         |  |
| LS3– Groups of organisms show                                                                        | 1. Change                         |  |
| evidence of change over time (e.g.                                                                   | 2. Evolution                      |  |
| evolution, natural selection,                                                                        | 3. Natural Selection              |  |
| structures, behaviors, and                                                                           |                                   |  |
| biochemistry).                                                                                       |                                   |  |
| LS4– Humans are similar to other                                                                     | 1. Behavior                       |  |
| species in many ways, and yet are                                                                    | 2. Disease                        |  |
| unique among Earth's life forms.                                                                     | 3. Human Identity                 |  |
| ISE The growth of scientific                                                                         | 1. Design Technology              |  |
| LSS- The growth of science has been                                                                  | 2. Tools                          |  |
| advanced through the development                                                                     | 3. Social Issues (Local And       |  |
| of technology and is used (alone or                                                                  | Global)                           |  |
| in combination with other sciences)<br>to identify, understand and solve<br>local and global issues. | Medical Technology and            |  |
|                                                                                                      | Biotechnology                     |  |
|                                                                                                      | 4. Career Technical Education     |  |
|                                                                                                      | Connections                       |  |

### Essential Understandings Physical Science

| Strand                               | Stem (rows) in GSEs                 |  |
|--------------------------------------|-------------------------------------|--|
| (Enduring Knowledge Statements)      |                                     |  |
| PS1– All living and nonliving things | 1. Composition                      |  |
| are composed of matter having        | · · ·                               |  |
| characteristic properties that       |                                     |  |
| distinguish one substance from       | 2. Properties                       |  |
| another (independent of              |                                     |  |
| size/amount of substance).           |                                     |  |
| PS2– Energy is necessary for change  | 1. Change                           |  |
| to occur in matter. Energy can be    | 2. Conservation                     |  |
| stored, transferred and              | 3. Energy                           |  |
| transformed, but cannot be           |                                     |  |
| destroyed.                           |                                     |  |
| PS3– The motion of an object is      | 1. Forces                           |  |
| affected by force.                   | 2. Motion                           |  |
| PS4– The growth of scientific        | 1. Design Technology                |  |
| knowledge in Physical Science has    | 2. Tools                            |  |
| been advanced through the            | 3. Social Issues (Local and Global) |  |
| development of technology and is     | Energy, Power, and                  |  |
| used (alone or in combination with   | Transportation                      |  |
| other sciences) to identify,         | Manufacturing                       |  |
| understand and solve local and       | 4. Career Technical Education       |  |
| global issues.                       | Connections                         |  |

#### Essential Understandings Science Process Skills

| Strand                                                                 |                                              |  |
|------------------------------------------------------------------------|----------------------------------------------|--|
| (Enduring Knowledge                                                    | Stem (rows) in GSEs                          |  |
| Statements)                                                            |                                              |  |
|                                                                        | 1. Making observations and asking questions  |  |
|                                                                        | 2. Designing scientific investigations       |  |
|                                                                        | 3. Conducting scientific investigations      |  |
| SPS1_Scientific Inquiry and                                            | 4. Representing and Understanding results of |  |
| Critical Thinking Skills                                               | Investigations                               |  |
|                                                                        | 5. Evaluating Scientific Investigations      |  |
|                                                                        | NECAP Science Assessment Targets for         |  |
|                                                                        | Inquiry (INQ)                                |  |
|                                                                        | May subject of performance component         |  |
| SPS2_Unifying Concents of                                              | 1.Nature of Science (NOS)                    |  |
| Science (including NECAP                                               | 2.Systems and Energy (SAE)                   |  |
| Science (including NECAP<br>Science Assessment Targets<br>by Big Idea) | 3.Models and Scale (MAS)                     |  |
|                                                                        | 4. Patterns of Change (POC)                  |  |
|                                                                        | 5.Form and Function (FAF)                    |  |
|                                                                        | 1. Collaboration in Scientific Endeavors     |  |
| SPS3– Personal, Social, and                                            | 2. Environment, Natural Resources, and       |  |
| Technological Perspectives                                             | Conservation                                 |  |
|                                                                        | 3. Science, Technology, and Design           |  |
|                                                                        | 1. Information and Media Literacy            |  |
|                                                                        | 2. Communication Skills                      |  |
|                                                                        | 3. Critical Thinking and Systems Thinking    |  |
| SPS4– Science Skills for                                               | 4. Problem Identification, Formulation, and  |  |
| Information,                                                           | Solution                                     |  |
| Communication and Media                                                | 5. Creativity and Intellectual Curiosity     |  |
| Literacy                                                               | 6. Interpersonal and Collaborative Skills    |  |
|                                                                        | 7. Self Direction                            |  |
|                                                                        | 8. Accountability and Adaptability           |  |
|                                                                        | 9. Social Responsibility                     |  |

|     | Standards                                            | <b>Guiding Questions</b>  |
|-----|------------------------------------------------------|---------------------------|
| LS1 | S:LS1:11:1.1 Classification of life into a hierarchy | What are the similarities |
|     | of groups (Domains to species)                       | and differences between   |
|     | 1.2 Using DNA similarities to establish              | all living things?        |
|     | phylogeny                                            |                           |
|     | 1.3 Binomial Nomenclature                            | What are Prokaryotic and  |
|     |                                                      | Eukaryotic Cells?         |
|     | S:LS1:11: 2.1 Structure of a Eukaryotic cell. The    |                           |
|     | organelles and their functions.                      | What are the functions of |
|     |                                                      | the Eukaryotic cell       |
|     | S:LS1:11:2.2 Gene expression, Cell signaling and     | organelles?               |
|     | communication, Cell growth and division.             |                           |
|     |                                                      | What is the relationship  |
|     | S:LS1:11:2.3 Cell Metabolism. Energy                 | between photosynthesis    |
|     | conversions in a cell.                               | and cellular respiration  |
|     |                                                      | and how do these          |
|     | S:LS1:11:2.4 Photosynthesis and Cellular             | processes contribute to   |
|     | Respiration                                          | biogeochemical cycles?    |
|     |                                                      |                           |
|     | S:LS1:11:2.5 Structure and function of proteins      | How do living cells       |
|     | in the cell (Enzymes)                                | maintain homeostasis?     |
|     |                                                      |                           |
|     | S:LS1:11:2.6 Examples of cell functions and cell     | What are the different    |
|     | differentiation in multi-cellular animals            | ways in which living      |
|     |                                                      | things reproduce?         |
|     | S:LSI:II:2.7 Homeostasis                             | What is the difference    |
|     | <b>S.I.S.1.11.2.1</b> Structure and function of DNA  | what is the unierence     |
|     | SEST: 11:S.1 Structure and function of DNA           | Moiosis2                  |
|     | SIS1:11:2.2 covual raproduction and ganatic          |                           |
|     | diversity                                            |                           |
|     | diversity                                            |                           |
|     | SIS1:11:3.3 Life cycles: Asexual sexual and          |                           |
|     | alternation of generations                           |                           |
|     |                                                      |                           |
| LS2 | (Covered in Environmental Science Curriculum)        |                           |
|     | ,                                                    |                           |

| LS3 | <b>S:LS3:11:2.1</b> Development of life on Earth.<br>Origin of life and evolutionary process.                            | How did life originated on Earth?                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|     | S:LS3:11:2.2 to 2.4, 2.6 and 3.1 Natural Selection                                                                       | What are the evidences of Evolution?                                                     |
|     | <b>S:LS3:11:2.5</b> DNA analysis and Protein analysis to show phylogeny                                                  | How do species change<br>the way they look over<br>time?                                 |
|     | <b>S:LS3:11:3.2</b> Explain the diversity of the past and present life forms on Earth.                                   | What is the role of genetic diversity in the                                             |
|     | S:LS3:11:3.3 Genetic diversity and survival.                                                                             | survival of a species?                                                                   |
|     | <b>S:LS3:11:3.4</b> Antibiotic resistance and changes in viral genomes as an example of Natural Selection                | Why do you have to finish your antibiotics?                                              |
|     | <b>S:LS3:11:3.5</b> Genetic variations within a species.                                                                 | What are mutations and how do they affect evolution and health?                          |
|     | <b>S:LS3:11:3.6</b> Mutations and changes in species genomes.                                                            | What are Punnet squares?                                                                 |
|     | <b>S:LS3:11:3.7</b> Mendelian genetics and patterns of inheritance.                                                      | What is a Pedigree?                                                                      |
|     | <b>S:LS3:11:3.8</b> Punnet squares and pedigree charts.                                                                  |                                                                                          |
|     |                                                                                                                          |                                                                                          |
| LS4 | <b>S:LS4:11:1.1 and 1.2</b> Describe how the functions of animal body systems function together to maintain homeostasis. | What are the similarities<br>between the body<br>systems of humans and<br>other animals? |
|     | S:LS4:11:2.1 Different factors that cause                                                                                |                                                                                          |
|     | disease.                                                                                                                 | What makes us sick?                                                                      |

|     |                                                                                                                   | 1                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| LS4 | <b>S:LS4:11:2.2 to 2.4</b> Preventing and treating disease                                                        | How does the immune<br>system function to<br>prevent and fight<br>disease?                                                        |
| LS5 | <b>S:LS5:11: 1.1 and 1.2</b> useful technology in life science. Types of Microscopes and other useful tools       | How do Biologists gather<br>data?<br>What types of                                                                                |
|     | <b>S:LS5:11: 3.2 to 3.4</b> applications of biotechnology in agriculture, pharmaceuticals and genetic engineering | Microscopes are used in<br>the classroom?<br>What other types of<br>Microscopes are there?<br>How is biotechnology<br>used today? |

| Essential Vocabulary         |                   |
|------------------------------|-------------------|
| <u>CONTENT</u>               | VOCABULARY        |
| Biology                      | Describe          |
| Prokaryotic                  | Identify          |
| Eukaryotic                   | Differentiate     |
| Cell                         | Recognize         |
| Organelle (include all)      | Explain           |
| Binomial Nomenclature        | Justify           |
| Metabolism                   | Compare/contrast  |
| Photosynthesis               | Evidence          |
| Respiration                  | Interrelations    |
| Protein synthesis            | Interdependence   |
| Homeostasis                  | Inquiry           |
| Gene                         | Scientific method |
| DNA and RNA                  | Observation       |
| Reproduction                 | Hypothesis        |
| Mitosis and Meiosis          | Prediction        |
| Genetic Diversity            | Variable          |
| Heredity                     | Experiment        |
| Punnet Squares and Pedigrees | Data              |
| Evolution                    | Measurement       |
| Natural Selection            | Analyze           |
| Mutation                     | Infer             |
| Organ system                 | Conclude          |
|                              | Graph             |
|                              |                   |
|                              |                   |

### Life Science

# Suggested Resources/ Activities

Cell Alive. Com

Learn.Genetics<sup>™</sup>

A Science Odyssey: You Try It: DNA Workshop

**Cellular Respiration** 

Human Pedigree Analysis 1

Darwin: Who Wants to Live a Million Years?: Science Channel Classification of Plants | National Geographic Education Video Lab 2—Mitosis Slides

http://www.education.nh.gov/instruction/curriculum/science/index.htm (Science Curriculum Website)

http://www.education.nh.gov/instruction/assessment/necap/released/index.htm (Science NECAP- Released items)