INTRODUCTION

The Hinsdale School District PreK-12 science curriculum is a coordinated program built around science education and the expectations of the New Hampshire Curriculum Frameworks. It proceeds sequentially; introducing, expanding, and further exploring content at appropriate grade levels with increasing degrees of depth and complexity. The Common Core State Standards for English Language Arts include standards pertaining to all content areas. **Teachers are responsible for incorporating the Common Core State Standards into their science instruction.**

IMPORTANT NOTE TO ALL TEACHERS

It is important for teachers to follow the curriculum for each grade level or class as described in this guide; the integrity of the PreK-12 sequence has been carefully considered in its creation. Grade levels and individual classes have some degree of flexibility in designing the sequence of topics through the year, but *addressing the provided scope is required*. At the elementary level, the topics for each grade level have been carefully planned so as to address necessary content without redundancy or omission to meet the expectations of the NH frameworks and high stakes testing. At the middle school and high school levels the curricula are also constructed to fully meet the expectations of the NH frameworks and high stakes testing. The guiding questions in each section make clear the topics of inquiry (scope) for each grade. These topics change and build on each other through the grades (sequence), making it imperative that each teacher use the guiding questions to plan instruction.

SCIENCE INQUIRY Science Inquiry Actu

Capture student interest and motivate continued learning!

Inquiry involves QUESTIONING. Inquiry requires being able to identify assumptions, to use critical and logical thinking, and the ability to consider alternative explanations. Inquiry might be highly structured where known outcomes are clear, or students may be free to explore with unanticipated results!

Students engaged in Inquiry:

- make observations
- pose questions
- propose answers
- examine what they may already know
- review already researched information
- explain / communicate results
- use tools to
 - o gather
 - o analyze
 - o interpret data

Students use journals to record observations, thoughts, ideas, and models, create diagrams, and represent data and observations with plots and tables. Students present their work to others with models, graphs, reports, posters, etc.

Asking students questions to guide continued exploration provides opportunities for discussion, further reflection, and student decision-making.

Appropriate activities are safe, developmentally appropriate, and directly related to the curriculum. Sufficient tools and materials must be available and science inquiry vocabulary (provided in guide) used.

Essential Understandings

The Science Curriculum for Hinsdale Elementary, Middle and High School is built around the standards listed in the New Hampshire Curriculum Framework. Science is divided into three content domains (Earth Space Science, Life Science, and Physical Science) and one Science Process Skills domain. The three content domains should encompass the Scientific Process Skills of Inquiry and Critical Thinking Skills. The following list of Essential Understandings or Enduring Knowledge Statements are used across all grade levels.

Essential Understandings Earth Space Science

Strand	Stem (rows) in GSEs	
(Enduring Knowledge Statements)		
	1. Atmosphere, Climate, and	
	Weather	
	2. Composition and Features	
ESS1– The Earth and Earth materials,	3. Fossils	
as we know them today, have	4. Observation Of The Earth	
developed over long periods of time,	From Space	
through constant change processes.	5. Processes and Rates Of	
	Change	
	6. Rock Cycle	
	7. Water	
ESS2– The Earth is part of a solar	1. Earth, Sun And Moon	
system, made up of distinct parts,	2. Energy	
which have temporal and spatial	3. Solar System	
interrelationships.	4. View From Earth	
ESS3– The origin and evolution of	1. Size And Scale	
galaxies and the universe	2. Stars And Galaxies	
demonstrate fundamental principles	3. Universe	
of physical science across vast		
distances and time.		
ESS4– The growth of scientific	1. Design Technology	
knowledge in Earth Space Science	2. Tools	
has been advanced through the	3. Local And Global	
development of technology and is	Environmental Issues	
used (alone or in combination with		
other sciences) to identify,	4. Career and Technical	
understand and solve local and	Education	
global issues.		

Essential Understandings Life Science

Strand (Enduring Knowledge Statements)	Stem (rows) in GSEs	
LS1– All living organisms have	1. Classification	
identifiable structures and	2. Living Things And Organization	
characteristics that allow for	3. Reproduction	
survival (organisms, populations, and species).		
152 Energy flows and matter	1. Environment	
LS2– Energy flows and matter recycles through an ecosystem.	2. Flow Of Energy	
recycles through an ecosystem.	3. Recycling Of Materials	
LS3– Groups of organisms show	1. Change	
evidence of change over time (e.g.	2. Evolution	
evolution, natural selection,	3. Natural Selection	
structures, behaviors, and		
biochemistry).		
LS4– Humans are similar to other	1. Behavior	
species in many ways, and yet are	2. Disease	
unique among Earth's life forms.	3. Human Identity	
LS5– The growth of scientific	1. Design Technology	
knowledge in Life Science has been	2. Tools	
advanced through the development	3. Social Issues (Local And	
of technology and is used (alone or	Global)	
in combination with other sciences)	Medical Technology and	
to identify, understand and solve	Biotechnology	
local and global issues.	4. Career Technical Education	
	Connections	

Essential Understandings Physical Science

Strand (Enduring Knowledge Statements)	Stem (rows) in GSEs	
PS1– All living and nonliving things	1. Composition	
are composed of matter having		
characteristic properties that		
distinguish one substance from	2. Properties	
another (independent of		
size/amount of substance).		
PS2– Energy is necessary for change	1. Change	
to occur in matter. Energy can be	2. Conservation	
stored, transferred and	3. Energy	
transformed, but cannot be		
destroyed.		
PS3– The motion of an object is	1. Forces	
affected by force.	2. Motion	
PS4– The growth of scientific	1. Design Technology	
knowledge in Physical Science has	2. Tools	
been advanced through the	3. Social Issues (Local and Global)	
development of technology and is	Energy, Power, and	
used (alone or in combination with	Transportation	
other sciences) to identify,	Manufacturing	
understand and solve local and	4. Career Technical Education	
global issues.	Connections	

Essential Understandings Science Process Skills

Strand (Enduring Knowledge	Stem (rows) in GSEs	
Statements)		
	1. Making observations and asking questions	
	2. Designing scientific investigations	
	3. Conducting scientific investigations	
SPS1– Scientific Inquiry and	4. Representing and Understanding results of	
Critical Thinking Skills	Investigations	
	5. Evaluating Scientific Investigations	
	NECAP Science Assessment Targets for	
	Inquiry (INQ)	
	May subject of performance component	
SPS2– Unifying Concepts of	1.Nature of Science (NOS)	
Science (including NECAP	2.Systems and Energy (SAE)	
Science Assessment Targets	3.Models and Scale (MAS)	
by Big Idea)	4.Patterns of Change (POC)	
	5.Form and Function (FAF)	
	1. Collaboration in Scientific Endeavors	
SPS3– Personal, Social, and	2. Environment, Natural Resources, and	
Technological Perspectives	Conservation	
	3. Science, Technology, and Design	
	1. Information and Media Literacy	
	2. Communication Skills	
	3. Critical Thinking and Systems Thinking	
SPS4– Science Skills for	4. Problem Identification, Formulation, and	
Information,	Solution	
Communication and Media	5. Creativity and Intellectual Curiosity	
Literacy	6. Interpersonal and Collaborative Skills	
	7. Self Direction	
	8. Accountability and Adaptability	
	9. Social Responsibility	

	Standards	Guiding
		Questions
PS1	S:PS1:6:1.3 Recognize that over one hundred elements exist, and identify the periodic table as a tool for organizing the information about them.	How can everything be made of matter?
	 S:PS1:8:1.7 Given graphic or written information, classify matter as atom/molecule or element/compound (Not the structure of an atom). S:PS1:8:2.4 Investigate the relationships among mass, volume and density. 	How can the differences in matter's characteristics be used to identify substances?
	S:PS1:8:2.5 Given data about characteristic properties of matter (e.g., melting and boiling points, density, solubility) identify, compare, or classify different substances.	How does ice melt?
	S:PS1:8:2.6 Represent or explain the relationship between or among energy, molecular motion, temperature, and states of matter.	
PS2	S:PS2:6:1.1 Differentiate between a physical change, such as melting, and a chemical change, such as rusting.	Are all changes in matter the same?
	S:PS2:8:1.5 Given a real-world example, show that within a system, energy transforms from one form to another (i.e., chemical, heat, electrical, gravitational, light, sound, mechanical).	How is energy involved in everything that changes?

PS2	S:PS2:6:2.1 Describe how mass remains	How can it be that, in the
	constant in a closed system and provide	big picture, the amount
	examples relating to both physical and chemical	of mass doesn't change?
	change.	or mass doesn't change:
	S:PS2:8:2.2 Collect data or use data provided to	
	infer or predict that the total amount of mass in	
	a closed system stays the same, regardless of	What is sound?
	how substances interact (conservation of	
	matter)	
	S:PS2:6:3.2 Explain that sound vibrations move	
	at different speeds, have different wavelengths;	How do things heat up
	and establish wave-like disturbances that	and cool down?
	emanate from the source.	
	S:PS2:8:3.6 Use data to draw conclusions about	
	how heat can be transferred (convection,	
	conduction, radiation).	
002	SIDE21612 1 Evaluin how balanced and	W/by do como things
PS3	S:PS3:6:2.1 Explain how balanced and	Why do some things move while others don't?
	unbalanced forces are related to an object's	move while others don t:
	motion.	What are the different
	S:PS3:8:2.2 Use data to determine or predict	kinds of forces?
	the overall (net) effect of multiple forces (e.g.,	
	friction, gravitational, magnetic) on the position,	
	speed, and direction of motion of objects.	
	· · · · · · · · · · · · · · · · · · ·	
PS4	None at this level	None at this level
	(No State standard) The Metric system and	What is the metric system
	mass, volume, and length.	and how is it used?

Physical Science

Essential Vocabulary

CONTENT

Elements Periodic table Atom/Molecule Element/Compound Mass Volume Density Characteristic properties matter melting and boiling points solubility energy, molecular motion, temperature states of matter physical change chemical change system energy transformations chemical heat electrical gravitational light

INQUIRY

Recognize **Classify matter** Investigate relationships Identify Compare Classify Represent or explain Differentiate Show Describe **Provide examples** Collect data Use data Infer Predict Explain Use data to draw conclusions Use data to determine or predict

Physical Science

sound
CONTENT CONT.
mechanical
conservation of matter
convection
conduction
radiation
sound vibrations
wavelengths
balanced forces
unbalanced forces
friction
magnetic

Physical Science

Suggested Resources/ Activities

Selected chapter projects and activities from the textbook.

http://www.education.nh.gov/instruction/curriculum/science/index.htm (Science Curriculum Website)

http://www.education.nh.gov/instruction/assessment/necap/released/index.htm (Science NECAP- Released items) 2008 NECAP Practice Test Inquiry Task: "Rainy Morning." 2010 NECAP released inquiry task: "Mass and Matter."

Science Matters: <u>http://science-mattersblog.blogspot.com/</u> Middle School Science: <u>http://www.middleschoolscience.com/</u>