INTRODUCTION

The Hinsdale School District PreK-12 science curriculum is a coordinated program built around science education and the expectations of the New Hampshire Curriculum Frameworks. It proceeds sequentially; introducing, expanding, and further exploring content at appropriate grade levels with increasing degrees of depth and complexity. The Common Core State Standards for English Language Arts include standards pertaining to all content areas. **Teachers are responsible for incorporating the Common Core State Standards into their science instruction.**

IMPORTANT NOTE TO ALL TEACHERS

It is important for teachers to follow the curriculum for each grade level or class as described in this guide; the integrity of the PreK-12 sequence has been carefully considered in its creation. Grade levels and individual classes have some degree of flexibility in designing the sequence of topics through the year, but *addressing the provided scope is required*. At the elementary level, the topics for each grade level have been carefully planned so as to address necessary content without redundancy or omission to meet the expectations of the NH frameworks and high stakes testing. At the middle school and high school levels the curricula are also constructed to fully meet the expectations of the NH frameworks and high stakes testing. The guiding questions in each section make clear the topics of inquiry (scope) for each grade. These topics change and build on each other through the grades (sequence), making it imperative that each teacher use the guiding questions to plan instruction.

SCIENCE INQUIRY Science Inquiry Actu

Capture student interest and motivate continued learning!

Inquiry involves QUESTIONING. Inquiry requires being able to identify assumptions, to use critical and logical thinking, and the ability to consider alternative explanations. Inquiry might be highly structured where known outcomes are clear, or students may be free to explore with unanticipated results!

Students engaged in Inquiry:

- make observations
- pose questions
- propose answers
- examine what they may already know
- review already researched information
- explain / communicate results
- use tools to
 - o gather
 - o analyze
 - o interpret data

Students use journals to record observations, thoughts, ideas, and models, create diagrams, and represent data and observations with plots and tables. Students present their work to others with models, graphs, reports, posters, etc.

Asking students questions to guide continued exploration provides opportunities for discussion, further reflection, and student decision-making.

Appropriate activities are safe, developmentally appropriate, and directly related to the curriculum. Sufficient tools and materials must be available and science inquiry vocabulary (provided in guide) used.

Essential Understandings

The Science Curriculum for Hinsdale Elementary, Middle and High School is built around the standards listed in the New Hampshire Curriculum Framework. Science is divided into three content domains (Earth Space Science, Life Science, and Physical Science) and one Science Process Skills domain. The three content domains should encompass the Scientific Process Skills of Inquiry and Critical Thinking Skills. The following list of Essential Understandings or Enduring Knowledge Statements are used across all grade levels.

Essential Understandings Earth Space Science

Strand	Stem (rows) in GSEs	
(Enduring Knowledge Statements)		
	1. Atmosphere, Climate, and	
	Weather	
	2. Composition and Features	
ESS1– The Earth and Earth materials,	3. Fossils	
as we know them today, have	4. Observation Of The Earth	
developed over long periods of time,	From Space	
through constant change processes.	5. Processes and Rates Of	
	Change	
	6. Rock Cycle	
	7. Water	
ESS2– The Earth is part of a solar	1. Earth, Sun And Moon	
system, made up of distinct parts,	2. Energy	
which have temporal and spatial	3. Solar System	
interrelationships.	4. View From Earth	
ESS3– The origin and evolution of	1. Size And Scale	
galaxies and the universe	2. Stars And Galaxies	
demonstrate fundamental principles	3. Universe	
of physical science across vast		
distances and time.		
ESS4– The growth of scientific	1. Design Technology	
knowledge in Earth Space Science	2. Tools	
has been advanced through the	3. Local And Global	
development of technology and is	Environmental Issues	
used (alone or in combination with		
other sciences) to identify,	4. Career and Technical	
understand and solve local and	Education	
global issues.		

Essential Understandings Life Science

Strand	Stom (rows) in CSEs	
(Enduring Knowledge Statements)	Stelli (lows) ill GSES	
LS1– All living organisms have	1. Classification	
identifiable structures and	2. Living Things And Organization	
characteristics that allow for	3. Reproduction	
survival (organisms, populations,		
and species).		
IS2-Energy flows and matter	1. Environment	
LS2 - Lifergy nows and matter	2. Flow Of Energy	
recycles through an ecosystem.	3. Recycling Of Materials	
LS3– Groups of organisms show	1. Change	
evidence of change over time (e.g.	2. Evolution	
evolution, natural selection,	3. Natural Selection	
structures, behaviors, and		
biochemistry).		
LS4– Humans are similar to other	1. Behavior	
species in many ways, and yet are	2. Disease	
unique among Earth's life forms.	3. Human Identity	
ISE The growth of scientific	1. Design Technology	
LS5– The growth of scientific	2. Tools	
advanced through the development	3. Social Issues (Local And	
of technology and is used (alone or	Global)	
in combination with other sciences	Medical Technology and	
to identify understand and solve	Biotechnology	
local and global issues	4. Career Technical Education	
local and global issues.	Connections	

Essential Understandings Physical Science

Strand	Stom (rows) in CSEs	
(Enduring Knowledge Statements)	Stelli (rows) in GSEs	
PS1– All living and nonliving things	1. Composition	
are composed of matter having	· · ·	
characteristic properties that		
distinguish one substance from	2. Properties	
another (independent of		
size/amount of substance).		
PS2– Energy is necessary for change	1. Change	
to occur in matter. Energy can be	2. Conservation	
stored, transferred and	3. Energy	
transformed, but cannot be		
destroyed.		
PS3– The motion of an object is	1. Forces	
affected by force.	2. Motion	
PS4– The growth of scientific	1. Design Technology	
knowledge in Physical Science has	2. Tools	
been advanced through the	3. Social Issues (Local and Global)	
development of technology and is	Energy, Power, and	
used (alone or in combination with	Transportation	
other sciences) to identify,	Manufacturing	
understand and solve local and	4. Career Technical Education	
global issues.	Connections	

Essential Understandings Science Process Skills

Strand		
(Enduring Knowledge	Stem (rows) in GSEs	
Statements)		
	1. Making observations and asking questions	
	2. Designing scientific investigations	
	3. Conducting scientific investigations	
SPS1_Scientific Inquiry and	4. Representing and Understanding results of	
Critical Thinking Skills	Investigations	
Critical Ininking Skills	5. Evaluating Scientific Investigations	
	NECAP Science Assessment Targets for	
	Inquiry (INQ)	
	May subject of performance component	
SPS2—Unifying Concents of	1.Nature of Science (NOS)	
Science (including NECAP	2.Systems and Energy (SAE)	
Science Assessment Targets	3.Models and Scale (MAS)	
by Big Idea)	4. Patterns of Change (POC)	
by Big Idea)	5.Form and Function (FAF)	
	1. Collaboration in Scientific Endeavors	
SPS3– Personal, Social, and	2. Environment, Natural Resources, and	
Technological Perspectives	Conservation	
	3. Science, Technology, and Design	
	1. Information and Media Literacy	
	2. Communication Skills	
	3. Critical Thinking and Systems Thinking	
SPS4– Science Skills for	4. Problem Identification, Formulation, and	
Information,	Solution	
Communication and Media	5. Creativity and Intellectual Curiosity	
Literacy	6. Interpersonal and Collaborative Skills	
	7. Self Direction	
	8. Accountability and Adaptability	
	9. Social Responsibility	

Earth Science

	Standards	Guiding
		Questions
ES1	S:ESS1:2:1.1 Recognize that weather conditions change frequently, and that weather patterns change over the seasons. S:ESS1:2:1.2 Describe and compare weather using observations and measurements of local weather conditions.	How can we measure and record the temperature? What can we observe from temperature readings over time? Is there a predictable pattern?
ES2	S:ESS2:2:2.1 Recognize that the light and heat the Sun provides to the Earth is necessary for life.	Why do we and other animals need the sun? How do we and other animals in our area adapt to seasonal changes?
ES3	None at this level	None at this level
ES4	S:ESS4:2:2.1 Recognize, and with assistance, safely demonstrate the use of tools to gather data and extend the senses, such as thermometers, hand lens and balances. S:ESS4:2:3.1 Differentiate between natural and manmade materials.	What tools can we use to measure and record the temperature? Where do our clothes come from?

EARTH SCIENCE

Essential Vocabulary	
INQUIRY	
recognize	
describe	
compare	
observe	
measure	
demonstrate	
differentiate	
record	
predict	
explain	
sequence	

FIRST GRADE

EARTH SCIENCE

Suggested Resources

Teacher Resources and Activities:

Harcourt curriculum guide

Teaching Children About Science by Elaine Levenson*

Sky Watchers, Student Booklet *

The Science Book of Weather by Neil Ardley*

Understanding by Design by Grant Wiggins and Jay McTighe *

Show Your Thinking by Elizabeth McLean and Sylvia Pusser *

Simple Nature Experiments with Everyday Materials by Anthony Fredericks*

Simple Science Experiments with Everyday Materials by Muriel Mandell *

Teaching Science as Inquiry by Arthur Carin

http://www.education.nh.gov/instruction/curriculum/science/index.htm

(Science Curriculum Website)

http://www.education.nh.gov/instruction/assessment/necap/released/index.htm

(Science NECAP- Released items)

http://www.harcourtschool.com

Our library system: weather – 551.5 and 551.6, seasons – 578.43

Trade books:

<u>Temperature</u> and <u>Energy</u> by Kay Manolis * (631.6 and 636.5)

Bently, W.A. and W.J. Humphreys., <u>Snow Crystals</u>. Dover Publications, Inc., New York, New York. 1962**

Rookie Read-About[®] Science Series including From Seed to Plant, It Could Still Be

<u>A Flower</u>, <u>Scientists ask Questions</u> (many available at the libraries below) Investigate the Seasons series by Capstone Press**

<u>Seasons of the Year</u> from the "Patterns in Nature" Series by Capstone Press** Rookie Read-About[®] Science Series including What's the Weather Today?,

<u>Scientists ask Questions</u> (many available at all three libraries below) <u>It's Spring!</u>, <u>It's Summer!</u>, <u>It's Fall!</u>, <u>It's Winter!</u> all by Linda Glaser *** Lois Ehlert has many beautiful seasonal books, available at all three libraries <u>Charlie Needs a Cloak</u> by Tomie dePaula Unraveling Fibers by Patricia Keeler

*Available in our school library

**Available at the Brattleboro Library

***Available at the Keene Library

EARTH SCIENCE

Suggested Activities

Ongoing line graph of the temperature in the morning and at the end of the day.

Experiment growing plants with different sources of light and consider how this affects the food chain.

Track the production of our clothes. Consider the materials; natural: cotton, wool, leather, silk, hemp and synthetic: nylon, polyester and other plastics. Consider the resources necessary to create and transport the final product.

Felt wool, try spinning and weaving, knit and crochet, mend garments. Test strength of different fibers before and after felting, spinning, weaving, knitting and crocheting.

Life Science

	Standards	Guiding Questions
LS1	S:LS1:2:1.1 Differentiate between living and nonliving things, and categorize objects in each group using the significant observable	How do we know that animals are alive?
	characteristics they share, such as color, shape and size.	How can we categorize different animals and nonliving things?
	S:LS1:2:2.1 Recognize that plants and animals have features that help them survive in different environments.	How do animals in our area adapt to seasonal changes?
	S:LS1:2:3.2 Recognize that living things have a life cycle, during which they are born, grow, and die.	What is the life cycle of a butterfly? Frog? Bear?
LS2	S:LS2:2:1.2 Recognize that animals, including humans, interact with their surroundings using their senses and that different senses provide different kinds of information.	How and why do we (and other animals) use our five senses?
	S:LS2:2:2.1 Identify the resources plants and animals need for growth and energy, and describe how their habitat provides these basic needs.	What do we (and other animals) need to stay alive?
LS3	S:LS3:4:1.3 Using information (data or scenario), explain how change in the environment can cause organisms to respond (e.g., survive there and reproduce, move away, die).	How do local animals adapt to seasonal changes?
LS4	S:LS4:2:2.1 Recognize that proper nutrition, exercise and rest are all important factors in maintaining good health.	How can we be healthy individuals every day? Where does our food
		come from?

LS5	S:LS5:2:1.1 Recognize that new products can be	How do we use different
	made out of natural materials, such as paper	animal products?
	from trees and cloth from various plants and	
	animals.	

Life Science

Essential Vocabulary	
CONTENT	INQUIRY
Observable characteristics	Differentiate
Features	Classify
Classification	Categorize
Survival	Observe
Environment	Recognize
Life-cycle	Compare
Food web	Explain
Energy	Sequence
Interaction	Predict
Five senses	Describe
Information	Identify
Resource	
Habitat	
Basic needs	
Change	
Response	
Survival	
Nutrition	
Health	
Evidence	

Life Science

Suggested Resources

Teacher Resources and Activities:

Simple Nature Experiments with Everyday Materials by Anthony Fredericks* Chalufour, Ingrid and Karen Worth. Discovering Nature With Young Children. Redleaf Press, a division of Resources for Child Caring. 2004 Teaching Science as Inquiry by Arthur Carin Understanding by Design by Grant Wiggins and Jay McTighe * Show Your Thinking by Elizabeth McLean and Sylvia Pusser * Harcourt Teachers Manual http://www.harcourtschool.com www.learner.org/jnorth - Journey North: A Global Study of Wildlife Migration and Seasonal Change http://www.education.nh.gov/instruction/curriculum/science/index.htm (Science Curriculum Website) http://www.education.nh.gov/instruction/assessment/necap/released/index.htm (Science NECAP- Released items) Nutritionist Nurse

Trade books:

What Do You Do With a Tail Like This? By Jenkins, Steve and Robin Page*

"I'm Alive!" Series by Mandy Suhr, pulished by Carolrhoda Books*

Proteins are Powerful, Grains are Good and others by Jacqui Bailey * (620.1)

How Nature Works by Davie Durnie * (508)

<u>Life in a Pond</u> by Clare Olive * (577.6)

What Lives in Streams and Rivers? by Gaarder-Junti *(578.76)

What Lives in a Forest? by Gaarder-Junti *(591.7)

Animals in the Wild by Sue Barraclough * (590)

(Basically, check out the 590 section of the library!!)

Rookie Read-About[®] Science Series including Frogs & Toads & Tadpoles, Too,

Hearing, Sound, etc. (many available at the libraries below)

"Animals in Their Habitats" Series published by Heinemann - <u>Forest Animals</u>, <u>Pond Animals</u>, <u>Wetland Animals</u>

"Creature Camouflage" Series published by Heinemann – Hiding in Wetlands,

Hiding in Forests

Bobbie Kalman's Leveled Readers, "My World" – <u>How do Animals Change?</u>, <u>My</u> <u>Backyard Community</u>, <u>Animals Move Like This</u>

Hibernation from the "Patterns in Nature" Series by Capstone Press**

*Available in the school library

**Available at the Brattleboro Library

***Available at the Keene Library

Suggested Activities

Focus on just a few animals ie: bears and frogs (hibernation), monarch (migration), and squirrels (stays active here). There are books available for each of these animals and young children relate to them well and can observe them (especially if you bring the pond muck and milkweed into your room).

Observe the life-cycles of butterflies and amphibians right in the room

Experiment with tools and products that mimic animal adaptations (straws = hummingbird beaks, spoons = spoonbill beaks, nut crackers = goldfinches beak *or* fuzzy sweater = bear fur, wet suit = frog skin and football pads = turtle shell

Use Thinking Maps to compare and contrast, describe and observe different animals

Grade:1

Physical Science

	Standards	Guiding
		Questions
PS1	S:PS1:2:1.1 Recognize that objects are made up of many different types of materials, such as wood, metal, and paper.	What animal materials are used to make the objects around us? What other natural materials are used to make the objects
		around us?
PS2	S:PS2:2:3.1 Recognize that sound is produced by vibrating objects and that the pitch of the sound can be varied by changing the rate of vibration.	What is sound? How is pitch changed?
PS3	S:PS3:2:2.1 Describe the many different ways things can move, such as in a straight line, zigzag or circular motion, back and forth, and fast and slow.	What can we observe about how sound travels?
PS4	S:PS4:2:1.1 Recognize that new objects can be made out of physical materials, such as cloth and paper.	How are animal and other natural materials used to make different fibers?

Grade:1

Physical Science

Essential Vocabulary		
<u>CONTENT</u>	INQUIRY	
Composition	Explain	
Materials	Recognize	
Properties	Identify	
Characteristics	Observe	
Observable	Predict	
Change	Describe	
Sound	Record	
Pitch	Categorize	
Vibration	Compare	
Rate	Demonstrate	
Energy	Explain	
Motion		
Force		
Speed		
Data		

Physical Science

Suggested Resources

Teacher Resources and Activities:

Harcourt curriculum guide

<u>Teaching Children About Science</u> by Elaine Levenson*

The Science Book by Sara Stein*

Understanding by Design by Grant Wiggins and Jay McTighe *

Show Your Thinking by Elizabeth McLean and Sylvia Pusser *

Simple Nature Experiments with Everyday Materials by Anthony Fredericks*

Simple Science Experiments with Everyday Materials by Muriel Mandell *

More Than Magnets: Exploring the Wonders of Science in Preschool and

<u>Kindergarten</u> by Sally Moomaw and Brenda Heironymus

Teaching Science as Inquiry by Arthur Carin

http://www.education.nh.gov/instruction/curriculum/science/index.htm

(Science Curriculum Website)

http://www.education.nh.gov/instruction/assessment/necap/released/index.htm (Science NECAP- Released items)

http://www.naeyc.org/files/naeyc/Ramps Pathways.pd

http://www.harcourtschool.com Our library system: sound - 534

Trade books:

<u>How Do We Use Materials?</u> By Jacqui Bailey* (620.1)
<u>Machines</u> by David Glover * (631)
<u>Sound</u> by Jacqui Gailey * (634)
Spilsbury, Richard and Louise, <u>What is Sound?: Exploring Science with Hands-On Activities</u>. Enslow Publishers. 2008**
Rookie Read-About[®] Science Series including <u>All About Sound</u>, and <u>Scientists Ask Questions</u> (many available at the libraries below)

Bored, Nothing to Do, by Peter Spier***

*Available in our school library

**Available at the Brattleboro Library

***Available at the Keene Library

Grade:1

Physical Science

Suggested Activities

Make instruments (boxes with rubber bands, trumpets with hoses and water bottles, wash tub bases and wax paper harmonicas) and perform pieces with them.

Make can and string phones, experiment with distance, traveling through different mediums and change of direction.

Observe and experiment with waves through water and ropes.

Consider the natural products used to make our clothing – natural: cotton, wool, leather, silk, hemp.

Felt wool, spin and weave, knit and crochet.

Make different kinds of paper.